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ABSTRACT

The objective of this paper is to perform grid adaptation using composite over-

lapping meshes in regions of large gradient to capture the salient features accurately

during computation. The Chimera grid scheme a, a multiple overset mesh technique,

is used in combination with a Navier-Stokes solver. The numerical solution is first

converged to a steady state based on an initial coarse mesh. Solution-adaptive en-

hancement is then performed by using a secondary fine grid system which oversets

on top of the base grid in the high-gradient region, but without requiring the mesh

boundaries to join in any special way. Communications through boundary interfaces

between those separated grids are carried out using tri-linear interpolation. Appli-

cations to the Euler equations for shock reflections and to a shock wave/boundary

layer interaction problem are tested. With the present method, the salient features

are well resolved.



1. INTRODUCTION

During the last decade both structured and unstructured grid systems have

been developed and applied for the computations in va_ous CFD problems. It is

well known that the accuracy of the computational solutions to analytical equations

is strongly influenced by the discretization of the space in which a solution is sought.

In general, the introduction of a highly dense distribution of points throughout a

computational domain will yield a more accurate answer than a coarse distribution.

However, limitations in computer processing speed and accessible memory prohibit

such a scenario. An appropriate alternative s for example a grid adaptation method,

would be to improve the accuracy of the computation where needed.

Many different solution-adaptive techniques have been developed and imple-

mented. Gnoffo 2 modelled the mesh as a network of springs whose constants were

determined from flow field gradients. Brackbill s and Saltzman and Brackbill 4 used

variational methods. Berger s had developed an adaptive refinement method which

dynamically embedded finer and finer grids to resolve flow gradients. Eiseman 6,7

developed the method of mean value relaxation and reviewed existing adaption con-

cepts. Other adaption methods are based upon equidistribution techniques; Naka-

hashi and Deiwert s used a spring-torsion analogy to adapt the grid and Connett et

al.9,10 based their algorithm on the method of minimal moments.

Many works have been devoted to developing techniques and methods that

address two major problem areas in grid generation. They are (1) the large amount

of time required to generate a grid for a complex domains and (2) the ability to

generate a grid that meets the users quality requirements (e.g, smoothness_ clus-

tering, orthogonality). Unfortunately, grid adaptation techniques usually created

high aspect-ratio or highly skewed cells to align with the high-gradient features,

resulting in a reduced convergent history.

A general motivation of the present study is to develop a grid adaptation
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method that not only enhances the accuracy of solutions by using fine grid in high-

gradient regions, but is also capable of handling complex geometries with cells of

minimal skewedness. The present methodology uses the Chimera composite over-

lapping mesh system to improve geometric flexibility, and to achieve grid adaptation

efficiently. It is proposed that composite grid schemes use two or more simple meshes

to map complex configurations. The use of a multiple grid approach can yield bet-

ter grid resolution, simplify the application of boundary conditions, and ease the

task of grid generation. Because the overset meshes are independent of each other

and the global mesh, they can readily be embedded in arbitrary orientation with

respect to the global grid. This approach has the following two merits. First, it

gives geometrical independence between grids. Second, it allows natural alignment

and clustering of grids with interesting features in the solution.

In the following sections, we describe the governing equations, basic solver algo-

rithm, and the solution-adaptative enhancement method using Chimera overlapping

meshes. Applications are presented for the shock reflection, 15 ° ramp channel, flat

plate boundary layer and shock wave/boundary layer interaction problems.

2. GOVERNING EQUATIONS

The Navier-Stokes equations can be expressed in an integral form in a volume

v with enclosing surface s as follow:

-N-dr + - = O,

where the conservative variable U is:

u = [p,p ,pE]T,

the inviscid flux F:

F - [F_, p_ + pI, pH_] T,



the viscous flux F_:

= [0, +

and the equation of state for ideaS gas:

P = (7 - 1)pe (2)

Here e represents the internal energy. The vector quantities, expressed in terms of

Cartesian coordinates, are denoted with an overhead arrow (_, and the tensor with

an overhead tilde (') or a dyadic notation such as u_.

Assuming a Newtonian fluid and using Stoke's hypothesis, the stress tensor

and the heat flux vector _" are expressed in terms of gradient (V) of relevant

quantities:
2

= -_po(V. _)i + p_[V_ + (v_)T],

_'= #eVe.

The transport coefficients for momentum and heat fluxes axe pv and re respectively.

In this paper, we restrict our study to laminar flows only. The laminar viscosity is

given by the Sutherland law and the Prandtl number is assumed to be a constant

value of 0.72 throughout the flowfields.

3. NUMERICAL METHODS

A three-dimensional Chimera grid-embedding technique is incorporated with

the fuU Navier-Stokes code so that the physical domain of the flow field is subdivided

into regions which can accommodate easily-generated grids. Extended utilization

of such technique is made to do grid adaptation.

Chimera Grid Scheme

The Chimera scheme is a grid embedding technique which provides a conceptu-

ally simple method for domain decomposition. For instance, a major grid is usually
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generated about a main body element and minor grids are then overset on the major

grid so as to resolve interesting features of the configuration. Usually, the minor

grids are overset on top of the major grid without requiring the mesh boundaries

to join in any special way. However, a common or overlap region is always required

to provide the means of matching the solutions across boundary interfaces.

To increase the flexibility in the selection of subdomains, the Chimera scheme

also allows an implementation to remove regions of a mesh containing an embedded

grid from that mesh. That is, an embedded mesh introduces a 'hole' into the mesh

in which it is embedded. Typically, a hole is defined through a creation boundary

which consists of a surface or a group of surfaces. The purpose of a hole creation

boundary is to identify points that are within this boundary. A mesh point is

considered to be inside a hole creation boundary if it is inside all surfaces that define

the boundary. Figure 1 illustrates the method used to determine whether a point is

inside or outside a surface. A mesh point, P, is considered to be inside a surface if

the dot product between l_ (the vector from the closest point on the surface to the

mesh point), and 1_ (the normal vector on the surface at the closest point, directed

outward from the hole region) is negative or zero. If the dot product is positive, the

mesh point is considered to be outside the surface. Because the regions interior to

the hole do not enter into the solution process, intergrid communication is simplified

since communication among the grids is restricted to the transfer of boundary data.

Appropriate boundary values are interpolated from the mesh or meshes in which

the boundary is embedded. Communication between overlaid grids is achieved by

interpolation of boundary values from grids in which the boundaries are contained.

The scheme employs nonconservative tri-linear interpolation that as some simple

experiments have shown is superior to Taylor series expansion. The question of

conservative vs nonconservative interpolation, is beyond the scope of the present

study, and will be a topic of future investigations.

The Chimera procedure naturally separates into two parts, (1) generation of
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the composite mesh and associated interpolation data and (2) solution of the flow

model. The first part has been embodied in a computer code, PEGSUS. 11 PF, GSUS

takes the independently generated component grids and the embedding structure

as input and automatically constructs the composite mesh and interpolation data

which are output. More details regarding the embedding grid technique can be

found in Ref.[12]

Flow Solver

A computer code based on a time accurate, 3D, finite volume, high reso-

lution scheme for solving the compressible full Navier-Stokes equations has been

developed is. Based on the finite volume method, equation (1) is semi-discretized

by assuming that the cell-centered conserved variables are constant within a cell,

and that the flux integral at cell surfaces is also approximated by an average value

of the numerical flux and the surface length. The numerical formulation uses a

new class of flux splitting schemes 14,1s. The scheme first splits the full flux into

¢(c) and ¢(P) respectively,convective and pressure fluxes, "1/_ "1/2

_,(,) _,(p)
F1/2 -" -1/2 -t-_1/2 : Cl/2_L/R + P1/2 (3)

at the cell interface L<½<R. The interface pressure, Pa/z, simply comprises the

"positive" and "negative" data from appropriate domains of dependence via charac-

teristic speed decomposition. The passive scalar variables _-(p, pu, pH) T is trans-

ported by a common convective vdoeity ul/_ that is constructed in a similar fashion

as P1/2- Then the upwind idea is used to select the state, i.e., "L" or "R', of the

vaxiables to be convected. As such, the interface flux can be recast in the following

form:

1

where A1/2( )=( )R-( )z. Here the first term on the RHS is dearly not a simple

average of the "L" and "R" fluxes, but rather a weighted average via the convective



velocity.

A variant of the second-ordertime accurate Lax-Wendroff method is proposed

that utilizes identical procedures in both predictor and corrector steps:

OU _

predictor : U* = U '_ + At _ ,

OU*

corrector : U** = U* + At--_-, (5)

= + u")U,,+I

As aforementioned, a flow solver must be modified to account for the use of

multiple meshes and the "holes" in the grids. These hole points must be blanked or

excluded from the flow field solution. The main change in the flow algorithm itself

is the treatment of the hole boundaries. The PEGSUS code is used to determine

the interpolation coefficients between composite grids. The hole information from

the Chimera grid package is stored in an array, IBLANK, which is defined for each

point on each grid as

IBLANK =
1, if a point is not blanked;O, if a point is blanked.

In the flow solver, each element in the corrector step is multiplied by the appropriate

IBLANK value before the solutions are updated:

U '_+1 = U '_ + IBLANK • (U ''+1 - U '_) (0)

The blanked solutions are updated in the interpolation routine. With this approach,

no special routines or logic tests are required to exclude the blanked points from

the flow field solution.

Solution-Adaptive Overlaid Meshes

In general, a great flexibility can be found in the procedure by using the overlaid

meshes in the region to adapt to the flow with special features. We first obtain a



sufficiently converged solution based on a reasonably coarse grid and then adapt a

secondary grid mesh which is clustered and aligned with the solution features such

as a shock wave, contact surface, boundary layer, and shear layer. In the shock

wave problem, we adapt a fine-mesh system to the shock location without requiring

the mesh boundaries to join in any special way. Subsequently, grid points within

those high-gradient regions are blanked or excluded from the base grid -- i.e. a hole

is created on the base (coarse) grid. Communications through boundary interfaces

between those separate grids are carried out using tri-linear interpolation. Figure

2 illustrates the connections between composite overlapping grids, with hole points

being blanked by a prescribed flow feature such as the shock wave. The idea is

that an additional structured grid block is generated to embed on the base grid in

high-gradient regions so that the accuracy of the solution will be enhanced.

To be specific, the present methodology provides not only geometrical indepen-

dence between grid meshes, but also a natural alignment and clustering of grids with

features in the solution. In this case, no grids will be sacrificed in the base (coarse)

mesh so that the overall accuracy of the flow solutions can be enhanced after the

adaptation. Furthermore, the grid orthogonality can be maintained in each grid

and the convergence history will not suffer because of grid skewedness. For the test

cases shown in this paper, the shock wave is the obvious feature for applying the

adaptation procedure. However, in more complex flows, several adaptation criteria

may be needed. Determinations in choosing various adaptive criteria, such as the

density, pressure, etc., really rely on the users' knowledge. An automatic adaptive

grid system is beyond the scope of the present study, and will not be discussed

herein.

4. TEST PROBLEMS AND RESULT DISCUSSIONS

The present grid adaptation method has been implemented for inviscid shock
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reflection, 15° ramp channel flow, laminar flat plate and shock wave/boundary layer

interaction problems. The numerical results presented herein show the flexibility of

the present method and the accuracy attainable by solution-based enhancement.

Case 1: Inviscid Shock Reflection

We consider a regular reflection of an oblique shock wave from a solid surface.

The inflow condition are fully specified with free stream values and the conditions at

the top boundary are set to satisfy the shock-jump relations with a specified shock

angle. The variables at the outflow boundary are extrapolated linearly. At the solid

wall, the slip condition is applied by setting the normal velocity component and the

gradient of other variables vanishes.

The first case has an incoming Mach number of 2.9 and a shock angle of 29

degrees. The computational domain containes four independent grid meshes. A

base grid of size 59x20 is equally divided in a domain 0.0<z<4.0, and 0.0__y__l.0.

Additional adapted grids are generated separately to align with the shock location

based on a prescribed flow solution. In all cases, it is sufficient that the grid meshes

are generated using an algebraic method which uses the edge point information to

interpolate grid point values on the surface interior. Figure 3 iUustrates the complete

composite grid system. As denoted in the figure, GRID1 (59x20) represents the

background coarse grid; GRID2 (29x50) and GRID3 (29x50) overset on top of

the incoming oblique shock and on the outgoing reflection shock, respectively. The

last grid, GRID4 (29x20), resolves the intersection region where the oblique shock

impinges against the solid surface.

PEGSUS then composes each grid mesh together and provides the necessary

interpolation data before proceeding to the flow solver. As displayed in Fig. 4,

the base grids are excluded within the shock region. It is proposed that the shock

structure will be resolved by the adapted overlapping grids. The pressure contour

for the shock reflection, as illustrated in Figs. 5(a-b), shows an accurate resolving
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of the shockwaves. Figures 6(a-c) plots the comparisonof the pressuredistribution

between numerical calculation and the exact solution along y=O. It is noted that

numerical results by using the present method predict a sharp transition through

the shock waves.

Case 2: 2D Channel with a 15 ° Ramp

In this case, the steady-state flow is computed in a 2D channel with a 15"

ramp. The free-stream Mach number is Moo=1.8. There is an attached shock at

the compression ramp corner, which reflects from the top wall, forming a Mach

stem. The Mach number is chosen so that the extent of the Mach stem is about

20% of the channel height. The shock wave continues to reflect from the bottom

and top walls, before exiting the channel. The ramp-shoulder expansion fan acts

to weaken the first reflected shock. It is noted that a slip line emanates from the

triple point at the Mach stem.

Numerical studies are performed based on three different types of grid system.

The calculation is first carried out on a single uniform grid of size 69×30 for a

domain (0<z<3 and 0_<y<_l), as shown in Fig. 7(a). Figures 7(b) and 7(c) plot

the converged results of the flowfleld in the form of pressure and Mach contours,

respectively. The slip line emanating from the triple point is hardly observed, as

shown in Fig. 7(c). Note that the shock wave structures axe not well resolved,

suggesting a solution improvement is needed there.

By scanning the maximum pressure gradient points from the base grid solution,

we adapt four additional meshes which are clustered and aligned with the shock

waves. Figure 8(a) shows the connections of the composite grid system. The blanked

regions indicating the hole locations on the base grid are displayed in Fig. 8(b). In

Figs. 8(c-d) both pressure and Mach contours give an overall qualitative picture of

the flow, demonstrating a sharp resolution of the ramp shock, roach stem, and the

subsequent shocks. It is worth noting the clear slip llne emanating from the triple
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point. In sight of those contour plots, the ramp shock is dearly captured and the

shock angle is about 51 degrees. In addition, the subsequent shocks are also well

resolved.

To validate the above adapted solutions, numerical results are further obtained

using a single fine mesh (149x 80), as shown in Fig. 9(a). Illustrated in Figs. 9(b) and

9(c) are the computed pressure and Much contours, respectively. The detailed quan-

titative profiles along the lower and upper solid boundaries are compared among

the present results and various single mesh solutions, as displayed in Figs. 10(a-d)

and ll(a-d). It is evident that the solution-adaptive overlapping meshes enhance

an accurate prediction for the ramp shock and subsequent shock locations along

the lower surface in Figs. 10(a-d). No attempt has been made to adapt the ramp-

shoulder expansion fan, so that the fan is slightly smeared due to the coarse grid

structure. For the upper surface, Figs. 11(a-d) show that the shock locations are

also accurately predicted when the present method is applied. Also observed in the

coarse grid solution, an early reflecting shock position is predicted. In general, we

show that the coarse grid system has the difficulty in predicting the correct loca-

tions for oblique shock, much stem, and the subsequent shock waves. However, by

using the overlapping adaptive meshes, we are capable of capturing accurately the

shock structures and other salient features.

Case 3: Flat Plate Boundary Layer Flow

A compressible, laminar flat plate flow problem is computed to validate the

implementation of Chimera overset meshes for viscous flow. Figure 12 illustrates

the solution-adaptive grid system used in the computational domain. It contains

two independent grid meshes with an overlapping region being used to connect

the grid boundaries. The spacing of GRID1 is refined using a hyperbolic-tangent

stretching function in the streamwise direction in the vicinity of the leading-edge,

followed by increasing cell spacing downstream. The second grid system, GRID2,

11



extends downstream using an equal-spacing distribution in the streamwise direction.

A hyperbolic-tangent stretching function is applied to stretch the grid in the normal

direction in both meshes.

Boundary conditions include a Mach 2 freestream inflow, exit outflow extrap-

olation, and outflow extrapolation at the top boundary to avoid artificially con-

straining the normal velocity component. An invicid wall is assumed forward of the

plate leading-edge. Laminar flow upstream of the leading edge starts to develop a

boundary layer at the leading edge. A no-slip condition is applied on the adiabatic

flat plate.

To validate our numerical results, comparisons are made between the present

numerical results and that obtained by solving the boundary-layer equations. The

boundary-layer equation for a flat plate in the absence of pressure gradient is derived

using the Mangler-Levy-Lees transformations

d_ = p_p.u..dz (7a)

(Tb)

where the subscript e denotes the fluid properties at the edge of boundary layer.

z is the distance along the body, and y normal to it. In _-_/ coordinates, the

boundary-layer equations are written asia

•(4")'+/f"= o (sa)

(alg'+ a2ff")'+ ff = 0 (8b)

in which

0,1 "--" c/PT',

g = h/h,, c = pl.t/pd.t,,

("/-I)M_":I- itl2 _--
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where the superscript prime denotes partial differentiation with respect to 7. Here

h is the enthalpy and Me is the edge Much number. The normM velocity component

is then obtained by solving the continuity equation:

+ = 0. (9)
az oN

The numerical solutions of the present method, as shown in Fig. 13, illustrate

self-similar profLles of the streamwise velocity distributions at various downstream

locations (i=30 of GRID1, i=15 and 38 of GRID2). Note that the profiles are

plotted against a transformed coordinate rl=YV/uoo/v_oz. This mainly shows that

the fluid fluxes are accurately transferred through the interfaces of grid boundaries.

It is also found that such similarity extends to the normal velodty distributions and

to the temperature fields. Figure 14(a) compares the streamwise vdocity component

between the present numerical result and the boundarydayer solution (Eqs. 8a-b)

at a downstream location (i=47 of GRID2) behind the grid interfaces. The normal

velocity distributions and the temperature profles are also compared respectively

in Figs. 14(b) and 14(c). It is evident that the present method obtains a very good

agreement with the boundary-layer solution, indicating that the accuracy of the

numerical results using overlapping meshes is well preserved.

Case 4: Shock Wave/Boundary Layer Interaction

The current method is readily applied to the shock wave/boundary layer inter-

action problem. The experiment by Hakkinnen et al.17 at Moo--2.0, Reo0--2.96 x 105

and shock angle:32.585 ° was chosen for calculation using the adapted overlapping

grids. The flow is observed that the leading-edge shock wave induced by the start

of the boundary layer becomes noticeably weaker after intersecting with an im-

pinging oblique shock wave. The oblique shock is sufficiently strong to induce a

sizable separation, which in turn causes the formation of the 'separation shock' as

the mainstream encounters a change of effective 'body'. An expansion fan is created
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as the streamline changes the slope, roughly at the pressure 'plateau'. Finally the

'reattachment shock' wave is developed corresponding to further rise of the pressure.

A single fine mesh using 100 by 120 in the streamwise and normal directions,

respectively, is first chosen to simulate the Mach 2 flow. As displayed in Fig. 15,

grid spacing in the normal direction is stretched near the solid boundary which

allows a better resolution of the boumdary layer. The resulting pressure contours

are plotted in Fig. 16. Enhancement of the flow solution is then performed using

overlapping adaptive meshes. Figure 17 illustrates the solution-adaptive grid system

which contains three independent meshes: GRID1 (100×80) resolves the boundary

layer region; GRID2 (80×40) covers the flowfield beyond the boundary layer; and

GRID3 (30 × 20) catches the incoming oblique shock wave. It is observed that the

present method obtains a significant improvement to the flowfield and, in particular,

to those shock structures, as shown in Fig. 18. We further compare the pressure

ratio and skin friction along the flat plate with those by Hakkinnen et al.17 While

many other calculations have been reported, the reattachment point in general is

much harder to predict accurately than the separation point. Figure 19 displays a

very good agreement of the enhanced solution with the experimental data in the

surface pressure ratio at both separation and reattachment points. However, the

skin friction in Fig. 20 shows a slight discrepancy in the separation region.

5. CONCLUDING REMARKS

We have presented a solution-adaptive enhancement method using Chimera

composite overlapping meshes and shown its capability for crisply capturing high-

gradient regions. Applications to various shock reflection and shock wave/boundary

layer interaction problems are tested. The successful implementation of the Chimera

overset grid in combination with a Navier-Stokes solver serves as a useful tool that

enhances the accuracy of salient features of the flowfield, such as shock and reflection
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waves. Unlike other grid adaptation methods, the present methodology would not

create high aspect-ratio or highly skewed cells in the grid system so that a reduced

convergence rate is avoided. The strategy from Chimera overset grid also provides

a great flexibility in grid generation for complex configurations.
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Fig. 3 Composite overlapping grid systemfor inviscid shock reflection problem;
GRID1 (59x20), GRID2 (29x50), GRID3 (29x50), GRID4 (29x20).
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Fig. 4 Background mesh (GRID1) with 'hole' grids blanked in high-gradient regions.
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Fig. 5 Pressure contours for shock reflection problem. (a)single grid 59x20,

(b)overlappin8 grids. (Moo = 2.9, shock angle = 29 °, Pm_,_ = 0.6, p,_,= =

4.0, Ap = 0.I)
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Fig. 7(a) Single coarse grid (69×30) for a 15 ° ramp channel flow.

Fig. 7(b) Pressure contours for a 15 ° ramp channel flow. (69x30)

(Moo -- 1.8, p,n_, -- 0.7, p,,_,,z -- 2.7, Ap -- 0.05)

Fig. T(c) Mach contours for a .¢troo=1.8 inviscid flow in a channel with a 15 ° ramp.

(M,_i, = 0.6, M,_a= = 1.8, AM = 0.05, 69x30)
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Fig. 8(a) Composite overlapping grid system for a 15 ° ramp channel flow;

GRID1 (69x30), GRID2 (29x50), GRID3 (29x50), GRID4 (29× 50),
GRID5 (29 x20).
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Fig. 8(b) Base grid (GKID1) with 'hole' grids blanked in high-gradient regions.
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Fig. 8(c) Pressure contours for a 15 ° ramp channel flow with composite adaptive meshes.

(_roo= z.8, p,,,,, = 0.7, p,,,,,.= 2.7, ,_p= 0.05)

Fig. 8(d) Msch contours for a _roo=l.8 inviscid flow in a channel with a 15 ° ramp.

(M,,,_,_ = 0.6, M,,,L= = 1.8, AM ----0.05, adapted overlapping meshes)
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Fig. 9(a) Fine grid mesh (149x80) for a 15 ° ramp channel flow.

Fig. 9(b) Pressure contours for a 15 ° ramp channel flow. (149x80)

(M_ = 1.8, p,_i,_= 0.7, p,_= = 2.7, Ap = 0.05)

Fig. 9(c) Mach contours for a Moo=l.8 inviscid flow in a channel with a 15 ° ramp.

(M,_ - 0.6, M,_ffi - 1.8, AM ----0.05, 149x80)
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Fig. 10 Variable profiles along the lower solid wall.

(a )pressure, (b)Mach number, (c)internal energy, ( d )density.
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Fig. 11 Variable profiles along the upper solid wall.

( a )pressure, (b)Mach number, (c)internal energy, (d )density.
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Solid Wall

Fig. 12 Composite grid system for laminar fiat plate problem; GRID1 (40x100),

GRID2 (50x80).
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Fig. 13 Self-similar profiles of the streamwise velocity distribution at various down-

stream locations. Moo-2.
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Comparisons of velocity and temperature distributions at a downstream loca-
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29



Fig. 15 Single fine grid system for the shock wave/boundary layer interaction.
(loox12O)

Fig. 16 Pressure contours for shock wave/boundary layer interaction problem with

Moo=2.0, Reoo=2.96×10 s, and shock angle = 32.585 °. (p,,_i,_=0.7, p,,_==l.1,

Ap=O.01)
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SolidWall

Fig. 17 Composite grid system for shock wave/boundary layer interaction problem;

GRID1 (100x80), GRJ.D2 (80x40), GRID3 (30x20).

Fig. 18 Pressure contours for shock wave/boundary layer interaction with compos-

ite adaptive meshes. (Moo--2.0, Re_-2.96x10 s, shock angle - 32.585 °,

prni,_:0.7, prnaz=l.1, Ap--0.01)

31



1.6

8
e_

Fig. 10

1.4

].0

0.8

0

m

oOnO0

0 Experiment
- - - Single Fine Mesh

Overlapped Meshes

0.6 i I , I i I , I
0.0 0.5 l.O I.S 2.0

X

Comparison of surface pressure ratio for shock wave/boundary layer interac-
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